Synbiotic composition for infants - Patent 2033529 (2024)

TECHNICAL FIELD OF THE INVENTION


[0001]The present invention relates to preparations comprising a probiotic and a prebiotic for infants, in particular for non-breast-fed infants.

BACKGROUND OF THE INVENTION


[0002]Infants are devoid of intestinal flora at birth. As a result of contact with the mother during birth and subsequent breast feeding, the intestinal flora rapidly develops and increases. During the development, the intestinal flora is still immature and its equilibrium is fragile and quickly prone to changes and thus to the occurrence of diseases and affections in the presence of pathogens. Breast-fed infants are known to be less afflicted by infections or diseases than non-breast-fed infants. Hence, breast-fed babies have less gastro-intestinal infections in terms of both incidence and duration, less atopic diseases such as allergy, eczema, allergy induced asthma, and less constipation than non-breast-fed infants.

[0003]Generally, the intestinal flora of breast-fed infants is primarily composed of bifidobacteria and lactic acid bacteria. Breast milk contains human milk oligosaccharides (HMO), which are a growth factor for bifidobacteria in the intestine of infants. The flora of formula-fed infants is more diverse and contains in general more Bacteroides, Clostridium and Enterobacteriaceae species. Formula-fed infants have about one-tenth to roughly two-third the number of bifidobacteria of breast-fed infants. Bifidobacteria are considered to be important in maintaining a well-balanced intestinal microbiota and it has been postulated that bifidobacteria have several health-promoting effects, including the prevention and/or treatment of diarrhea and intestinal infections. Furthermore, bifidobacteria have been shown to play a role in the immune system of the host.

[0004]The intestinal flora of infants may be modified by nutritional changes in the diet, like consumption of probiotics or prebiotics. As an example of the probiotics approach, EP-A-0,904,784 describes the administration of a mixture of micro-organism strains, including Bifidobacterium strains. However, a problem associated therewith is that the mixture of microbes, while providing some health benefit, may also have a deleterious effect on the still immature intestinal flora of non-breast-fed infants due to its broad spectrum of action. Further, many probiotic supplements have a short shelf-life and contain too low a number of living microorganisms, thereby failing to provide the expected probiotic effects.

[0005]Prebiotics are defined as non-digestible food ingredients that selectively stimulate the growth and/or activity of one or more bacteria in the colon and thereby beneficially affect the host (Gibson and Roberfroid, J. Nutr. 125:1401-14121995). A preferable way to improve the intestinal flora of bottle-fed babies is to selectively stimulate the bifidobacteria already present in the bottle-fed infant's intestine by specific non-digestible oligosaccharides, i.e. prebiotics. Also, mixtures of oligosaccharides and polysaccharides have been proposed as prebiotics, e.g. in WO 00/08948. One example is the combination of galacto-oligosaccharide with fructopolysaccharides. The bifidobacteria level in infants receiving a formula containing these prebiotics has been shown to be elevated in comparison with a standard formula (see e.g. Moro et. al. J. Pediatr. Gastroenterol. Nutr. 34:291-295, 2002).

[0006]The approach up to now was to promote bifidobacteria in general, i.e. on the genus level. The genus Bifidobacterium consists of many different species, which differ in metabolism, enzyme activity, oligo- and polysaccharide utilisation, cell wall composition, and interaction with the host's immune system. It therefore can be expected that not every species of Bifidobacterium has the same functional effect on the infant. Examples of different Bifidobacterium species are B. longum, B. breve, B. infantis, B. adolescentis, B. bifidum, B. animalis, and B. dentium. B. adolescentis is more prevalent in the flora of adults, and is less common in faeces of healthy infants and babies. B. animalis /B. lactis is not naturally occurring in humans, and B. dentium is a pathogenic bacterium. In healthy infants the bifidobacterial flora is mainly composed of Bifidobacterium infantis, B. breve and B. longum. Kalliomaki et. al. (Curr Opin Allergy Clin Immunol. 2003 Feb;3(1):15-20, and references cited therein), reported that allergic infants harbour an adult-like Bifidobacterium flora whereas a typical infant Bifidobacterium flora was shown in healthy infants, indicating a correlation between the occurrence of certain Bifidobacterium species and the chance of developing allergy. These results indicate that the stimulation of the genus Bifidobacterium in the baby's colon may not be sufficient. It is the aim to achieve a flora in bottle-fed infants that is reminiscent to the flora of breast fed babies on a species level.

[0007]For the purpose of the present invention, "breast-fed infants" refers to infants which are exclusively fed with human breast milk. "Non- or partially breast-fed infants" means infants which are not or not exclusively receiving human breast milk. This definition includes those infants which are receiving at least the content of a bottle per day, i.e. at least 80 ml of formula milk per day, the rest, if any, of the nutrition being provided from solid nutrition or liquid nutrition such as breast milk, i.e. partly-breast-fed infants.

[0008]EP 1 062 873 A1 describes the use of a combination of two different carbohydrate components and explains a benefit thereof in case of diaper rash. EP 904 784 A1, Isolauri et al. Am J Clin Nutr 2001, 73:444S-450S and Yasei et. al. Antonie van Leeuwenhoek, 1999, 76:383-389 describe immunomodulation by probiotics. Moro et al, 2002, J Pediatr Gastroenterol Nutr 43:291-295 discloses dosage-related bifidogenic effects of galacto- and fructooligosaccharides in formula fed term infants.

SUMMARY OF THE INVENTION


[0009]It was been found that the increase in the level of Bifidobacterium using mixtures of non-digestible carbohydrates also regulates the Bifidobacterium population to a more infant-like population, i.e. low in B. catenulatum, B. pseudocatenulatum and B. adolescentis, whereas infants fed with a standard formula exhibit a more adult-like flora, that is more predominant in B. catenulatum, B. pseudocatenulatum and B. adolescentis. It was also found that the Bifidobacterium population in such prebiotic-fed infants was still deficient in one particular microorganism, namely Bifidobacterium breve.

[0010]Accordingly, a preparation comprising Bifidobacterium breve and a mixture of non-digestible carbohydrate prebiotics was found beneficial and very suitable for regulating the Bifidibacterium population on a species level in the gastro-intestinal tract of infants. Furthermore, it was surprisingly found that addition of other Bifidobacterium species than B. breve species is not necessary, as they are sufficiently regulated by the preparation as such.

DETAILED DESCRIPTION OF THE INVENTION

Preparation

1) Bifidobacterium breve


[0011]Bifidobacterium breve is an essential ingredient of the present invention. This bacterium has been found by the Applicant's method of detection as being present in limited quantities in non-breast-fed infants. Accordingly, the administration of this bacterium with the carbohydrate mixture enables the normalisation of the Bifidobacterium species population to a level equivalent to that present in the gastrointestinal tract of breast-fed infants.

[0012]Preferred Bifidobacterium breve strains are those selected from isolates from the faeces of healthy breast-fed infants. Typically, these are commercially available from producers of lactic acid bacteria, but they can also be directly isolated from faeces, identified, characterised and produced. Examples of commercially available B. breve are B. breve Bb-03 from Rhodia, B. breve MV-16 from Morinaga, and B. breve from Institut Rosell, Lallemand, but B. breve can also be obtained from culture collections such as DSM 20091, and LMG 11613.

[0013]The amount of B. breve in the preparation of the invention can be based on the total amount of soluble non-digestible carbohydrates, and is preferably from 107 to 1011, more preferably from 108 to 1010 cfu of the bacteria per g of the total of these carbohydrates. When the preparation is used as a supplement, the Bifidobacterium breve is most preferably present in the supplement in an amount of from 1x106 to 1.5x1011 cfu/g, preferably from 3x107 to 5x1010 cfu/g, more preferably from 5x108 to 1x1010 cfu/g. When the preparation is used as a (complete) infant nutrition, the B. breve is most preferably present in the nutrition in an amount of from 1x104 to 1x1010 cfu/g, preferably from 5x106 to 3x109 cfu/g, more preferably from 1x107 to 5x108 cfu per g of the infant nutrition. These concentration are chosen in such a way that the daily dose is about 1x106 to 1.5x1011 cfu/g, preferably from 3x107 to 5x1010 cfu/g, more preferably from 5x108 to 1x1010 cfu/g.

2) Mixture of non-digestible carbohydrate prebiotics


[0014]A mixture of non-digestible carbohydrate prebiotics is also an essential element of the invention. By "non-digestible", it is meant that that the carbohydrates remain undigested in the gastrointestinal tract and reach the large intestine unresorbed.

[0015]For the purpose of the invention, the mixture of non-digestible carbohydrates contains at least two different, soluble carbohydrate components A and B, which remain undigested in the gastrointestinal tract and reach the large intestine unresorbed. The carbohydrate mixtures according to the present invention may also consist exclusively of these two carbohydrate components A and B.

[0016]In the mixture of at least two non-digestible soluble carbohydrate components A and B, at least 50%, preferably at least 75%, of the total non-digestible soluble carbohydrates of components A and B is selected from disaccharides to eicosasaccharides (polysaccharides having 20 monosaccharide units); the remainder may be non-digestible monosaccharides and non-digestible polysaccharides which are longer than 20 units. It is also preferred that more than 95%, preferably more than 98% of the total soluble non-digestible carbohydrates has a chain length of no more than 100 units. Where percentages and averages are mentioned in this description, percentages and averages by weight are meant, unless it is evident that another basis is meant or when otherwise specified.

[0017]The carbohydrates of components differ:

  1. (i) in the (average) number of monosaccharide units of the carbohydrate, component A having an average chain length which is at least 5 monosaccharide units lower than the average chain length of component B;
  2. (ii) in the structure of the monosaccharide units of the carbohydrate, component A being built up from different structural units from component B; where A and/or B are built up from repeating combinations of different monosaccharides units, for example in the case of galactomannans and arabinogalactans, at least 50% of the monosaccharide units of the two components should be different (in the above example either or both should have less than 50% anhydrogalactose units);

[0018]Preferably, component A is selected from indigestible monosaccharides up to hexasaccharides of the same carbohydrate structure, and component B is selected from heptasaccharides and higher polysaccharides of the same carbohydrate structure. Carbohydrate component A thereby consists of at least one non-digestible monosaccharide or at least one non-digestible oligosaccharide. With oligosaccharides it is understood those comprising 2 up to and including 6 monosaccharide units. Carbohydrate component A may also, and preferably, be formed by a mixture of two or more of the mentioned saccharides. It may therefore be comprised of any number of various monosaccharides and/or oligosaccharides of that kind, i.e. of the same structure.

[0019]According to this preferred embodiment, carbohydrate component B consists of at least one polysaccharide comprising 7 or more monosaccharide units. With polysaccharides it is understood those starting from heptasaccharide (e.g. heptasaccharide, octasaccharide, nonasaccharide, decasaccharide, etc.). There is no specific upper limit to the chain length of polysaccharides, and they may be as long as several hundreds or even thousands of monosaccharide units. However, chain lengths of more than 100 (about 16 kD), and especially those of more than 700 (about 100 kD) are less preferred according to the invention. Preferably, component B does not contain more than 5% or even not more than 2% of hom*ologues having more than 100 monosaccharide units. Carbohydrate component B may also be comprised of only one polysaccharide of that kind or, preferably, of two or more polysaccharides of different length of that kind, i.e. of the same structure. Carbohydrate component A represents up to 95 wt% of the sum of carbohydrate component A and carbohydrate component B (A + B = 100 wt%). Carbohydrate component B represents 5 to 20 wt% of the sum of carbohydrate component A and carbohydrate component B. Component A constitutes 95 to 80 wt.% and in particular 95 to 90 wt%, and component B 5 to 20 wt.% and in particular 5 to 10 wt% of the carbohydrates present in toto, with A + B = 100 wt%.

[0020]As soluble carbohydrates in the sense of the present invention are understood those that are at least 50% soluble, according to a method described by L. Prosky et al, J. Assoc. Anal. Chem 71: 1017-1023, 1988. The method concerns modified AOAC methods 43.A14 - 43.A.20 wherein the concentration of buffers were modified and hydrochloric acid is substituted for phosphoric acid. More specifically, the buffers are according to AOAC 43.A19, except use 0.275N NaOH instead of 0.171N NaOH, 0.325M HCl instead of 0.205M H3P04, and 0.08M phosphate buffer instead of 0.05M phosphate buffer.

[0021]At least 80 wt% of the carbohydrates or saccharides out of the sum of carbohydrate component A and B thereby have a prebiotic effect. Preferably, at least 80 wt% of the carbohydrates belonging to carbohydrate component A, and also at least 80 wt% of those belonging to carbohydrate component B, have a prebiotic effect. In other words, preferably at least 80 wt% each of the carbohydrates or saccharides out of carbohydrate components A and B, are intended to reach the large intestine in an undigested (hence not resorbable in the small intestine) manner. In other words, these carbohydrates or saccharides of carbohydrate components A and B in the gastrointestinal tract are neither resorbed and digested in the stomach nor in the small intestine, but reach the large intestine as such.

[0022]With a prebiotically active carbohydrate according to the present invention it is understood a carbohydrate, which reaches the large intestine undigested (hence not resorbable in the small intestine), and there, it selectively encourages the growth and/or the activity of one or of a restricted number of bacterial species in the intestine, and consequently promotes health. This prebiotic effect of such carbohydrates and their specific mechanisms are described in detail in "G.F. Gibson & M.B. Roberfroid, J.Nutr. 1995; 125: 1401-1412", whereto explicit reference is made herewith, and of which the disclosure is included in the present document.

[0023]The proportion of the non-prebiotically active carbohydrates or saccharides of carbohydrate components A and B therewith amounts to a maximum of 20 wt%. These carbohydrates or saccharides refer to those which are actually soluble but can be excreted in an undigested form. These carbohydrates can exercise a physical effect in that they increase, for example, the volume of the faeces or prompt a water adsorption.

[0024]For the assessment of the proportion determining the carbohydrate components A and B in a dietary or pharmaceutical product, the following steps are carried out. In a first stage, all soluble carbohydrates are extracted from the product by means of water. Fats and proteins are removed from the extract. In a second stage, the soluble carbohydrates or the extract, respectively, are digested by means of human enzymes, e.g. human amylase, human pancreatic juice or small intestine ciliated border preparations. The yield of non-digested carbohydrates (except for the in vivo resorbable monosaccharides obtained in this in vitro experiment), constitutes the two carbohydrate components A and B. 80 % thereof are supposed to be prebiotically active.

[0025]Hence, the carbohydrate mixtures to be used in the preparation of the invention are those, wherein the carbohydrates, which are soluble and undigested in the sense described above, fulfil the herein specified criteria and constitute the carbohydrate components A and B.

[0026]By means of a selective combination of oligosaccharides and polysaccharides, and consequently the simultaneous presence of carbohydrate components A and B, the health-promoting microorganisms in the large intestine may be promoted and/or pathogenic microorganisms may be suppressed by an essentially higher efficiency than would be the case with only one of said carbohydrate components. Thus, it is possible with the administration of the carbohydrate combination, to achieve a very rapid restitution of a normal large intestinal flora, to maintain the same or to prophylactically prevent an alteration of the intestinal flora during situations of stress, and thus to influence the bacterial colonisation of the large intestine in a way, which is more efficient than the one with the previously used carbohydrates.

[0027]At least 80 wt% of carbohydrate component A as well as of carbohydrate component B consist of carbohydrates, which are bifidogenic and/or which promote lactic acid bacteria. Due to such a combination of oligosaccharides and polysaccharides having said properties, the growth of the lactic acid bacteria may surprisingly be promoted in an essentially stronger manner than would be the case with oligosaccharides or polysaccharides alone. Not only lactic acid bacteria are thereby promoted, which are naturally present in the intestine, but also the growth of those is promoted - optionally even in a selective manner - which are introduced exogenously.

[0028]Apart from this indirect action via the bacteria themselves and their metabolites such as organic acids (acetate, lactate, etc.), pH effects and stimulation of colonozytes, direct physical effects such as peristalsis, water content, quantity of faeces, mechanical action upon the intestinal mucosa, are likewise positively influenced.

[0029]Thus, the carbohydrate mixtures dispose not only of a nutritive effect but also of a wide spectrum of activities. In addition to the above-described biological effects, the following may also be achieved by means of the inventive mixtures: stabilisation of natural microflora, prevention of pathogenic substances/organisms such as toxins, viruses, bacteria, fungi, transformed cells and parasites from adhering, dissolution of complexes of toxins, viruses, bacteria, fungi and other pathogens having endogenous cells, as well as their elimination from the body, and an acceleration of wound healing.

[0030]Thus, the mixtures are suitable for the prophylaxis and/or the treatment of symptoms or diseases occurring in conjunction with a disturbed intestinal flora, for example, as a consequence of the association or adhesion of the mentioned substances and organisms with or on epithelia or other endogenous cells.

[0031]The chain length of the polysaccharide of component B, or the weight-average chain length in case of a mixture of polysaccharides, is at least five units longer than the chain length of the oligosaccharide of component A or the weight-average of a mixture of oligosaccharides. Preferably, the average chain length of the oligosaccharides A is between 2 and 6 units, and the average chain length of the polysaccharides B is between 7 and 30, more preferably between 8 and 20. Where both oligosaccharides and polysaccharides of the same structure are present, the carbohydrates of this structure are considered as component A when the weight-average chain length is below 6.5 and the individual members having a chain length of 7 and higher are not counted with the component A; on the other hand, they are considered as component B when the weight-average chain length is above 6.5 and then the individual members having a chain length of 6 and lower are not counted with the component B.

[0032]A preferred carbohydrate mixture is composed of galacto-oligosaccharide and inulin.

[0033]According to the invention 80 to 100 wt% of carbohydrate components A belong to the group of galacto-oligosaccharides and 80 to 100 wt% of the carbohydrate components B belong to the group of fructo-polysaccharides. For the production of the carbohydrate mixtures, carbohydrates and carbohydrate mixtures presently known and used in particular for the production of foods or food products can be used. It is also possible to use raw materials previously modified in a technical way. The preparation of the mixtures may thereby ensue by means of a simple blending of the correspondingly selected carbohydrates or oligosaccharides with polysaccharides or the carbohydrate mixtures. The initial components must thereby be so mixed with one another that the parameters are respected with the finished mixtures.

[0034]Non-digestible carbohydrates according to the present invention are typically administered at a daily dose of 0.5 to 30 g, preferably 2 to 15 g, more preferably 3 to 9 g.

[0035]One preferred mode of administration of the preparation is as a supplement. The supplement is suited for infants which are non-breast-fed or partly breast-fed, including non- or partly breast-fed prematurely born babies and non- or partly- breast-fed maturely born babies.

[0036]The preparation may also be used as an infant nutrition. In this case, the invention infant nutrition further comprises one or more ingredients selected from digestible carbohydrate, a lipid source, protein source, and mixtures thereof.

3) Other components


[0037]Apart from the carbohydrate components A and B, other carbohydrates may be present as well. Amongst those are 1) the digestible carbohydrates, which are digestible as described above, and 2) the insoluble carbohydrates, which are resorbable/digestible or even not resorbable/digestible. Typical insoluble non-digestible carbohydrates for use in the infant nutrition supplement are soy polysaccharides, and resistant starch, cellulose and hemicellulose; more preferably they are selected from soy polysaccharides and resistant starch.

[0038]Typical soluble and digestible carbohydrate for use in the infant nutrition supplement are selected from maltodextrins, starch, lactose, maltose, glucose, fructose, and sucrose and other mono- and disaccharides, and are more preferably selected from maltodextrin, lactose, maltose, glucose, fructose, sucrose, and mixtures thereof.

[0039]These carbohydrates enumerated sub 1) and 2), may be present as such in any arbitrary quantity in addition to the carbohydrate components A and B, in each case depending on the desired final product. Preferably, the insoluble carbohydrates constitute 0 to 10 wt% of the carbohydrate mixtures.

[0040]Typical ingredients for use as a lipid source for use in the infant nutrition supplement may be any lipid or fat which is suitable for use in infant formulas. Preferred lipid sources include milk fat, safflower oil, egg yolk lipid, canola oil, olive oil, coconut oil, palm oil, palm kernel oil, palm olein, soybean oil, sunflower oil, fish oil, and microbial fermentation oil containing long-chain polyunsaturated fatty acids. These oils may be in the form of high oleic form such as high oleic sunflower oil and high oleic safflower oil. The lipid source may also be in the form of fractions derived from these oils such as palm olein, medium chain triglycerides (MCT), and esters of fatty acids such as arachidonic acid, linoleic acid, palmitic acid, stearic acid, docosahexaeonic acid, linolenic acid, oleic acid, lauric acid, capric acid, caprylic acid, caproic acid, and the like.

[0041]For pre-term formulas, the lipid source preferably contains medium chain triglycerides, preferably in an amount of 15% to 35% by weight of the lipid source.

[0042]The lipid source preferably has a molar ratio of n-6 to n-3 fatty acids of 5:1 to 15:1, preferably from 8:1 to 10:1.

[0043]When present, it is preferred that the lipid are present at levels of from 20% to 40% by weight of the composition or as 0.8 to 1.5 g/100 kJ in an infant formula.

[0044]The proteins that may be utilised in the nutritional products of the invention include any protein or nitrogen source suitable for human consumption. Examples of suitable protein sources for use in infant formula typically include casein, whey, condensed skim milk, non-fat milk, soy, pea, rice, corn, hydrolysed protein, free amino acids, protein sources which contain calcium in a colloidal suspension with the protein and mixtures thereof. It is preferred for use herein that the protein are in hydrolysate form, thereby reducing the risk of allergy in such infant. Commercial protein sources are readily available and known to one practicing the art.

[0045]Typically, in the milk-based infant formula hydrolysates 100 % hydrolysed whey protein from cow's milk is present. In other milk-based infant formulae the ratio of casein/whey typically is between 1.8:0.3-3-0.

[0046]When present, it is preferred that the protein source is present at a levels of from 9% to 19% by weight of the composition. When used as an infant formula, the protein source is preferably present in an amount of from 0.45 to 1.0 g /100 kJ.

[0047]A nutritionally complete formula preferably contains all vitamins and minerals understood to be essential in the daily diet and in nutritionally significant amounts. Minimum requirements have been established for certain vitamins and minerals. Examples of minerals, vitamins and other nutrients optionally present in the infant formula include vitamin A, vitamin B, vitamin B2, vitamin B6, vitamin B12, vitamin E, vitamin K, vitamin C, vitamin D, folic acid, inositol, niacin, biotin, pantothenic acid, choline, calcium, phosphorous iodine, iron, magnesium, copper, zinc, manganese, chloride, potassium, sodium selenium, chromium, molybdenum, taurine, and L- carnitine. Minerals are usually added in salt form. The presence and amounts of specific minerals and other vitamins will vary depending on the intended infant population.

[0048]If necessary, the infant formula may contain emulsifiers and stabilisers such as soy lecithin, citric acid, esters of mono and di-glycerides, and the like. This is especially provided if the formula is to be provided in liquid form.

[0049]The infant formula may optionally contain other substances which may have a beneficial effect such as (non-carbohydrate) fibres, lactoferrin, immunoglobulins, nucleotides, nucleosides, and the like.

Applications


[0050]The preparations according to the invention have been found to be particularly useful in the normalisation of the Bifidobacterium population according to the species distribution in breast-fed infants, considered as "standard", in the gastro-intestinal tract of infants which were non- or partly breast-fed, in particular those which are prematurely born babies, maturely born babies, as well as infants which are in the adaptation period to solid food. The preparation of the invention is also suitable for infants changing from breast to bottle feeding.

[0051]The preparations of the invention have also been found particularly useful for the prevention or treatment of an immune condition. This immune condition is believed to be the result of the difference in the composition of the Bifidobacterium species in the gastrointestinal tract of these non- or partly breast-fed infants when compared to that of breast-fed infants.

[0052]Typically, such immune conditions include conditions selected from allergy, atopic dermatitis, eczema, asthma, atopy, allergic rhinitis, food hypersensitivity, diapers rashes, diarrhoea, and mixtures thereof.

[0053]Accordingly, the invention provides the use of the preparation for the prevention or treatment of immune conditions mediated diapers rashes.

[0054]Advantageously, the preparation has been found beneficial for inhibiting the infiltration of eosinophils, neutrophils and mononuclear cells in allergic lesions, and/or inhibiting the Th2 type immune response and/or stimulating the Th1 mediated immune response.

Example 1: Validation of the developed probes and primers for bifidobacteria


[0055]The bacterial strains used to validate the assays for the relative quantification of the different Bifidobacterium species are listed in Table 2.

.Table 2

Bacterial strains and origins used for the development of the 5' nuclease assays
Strain Origina
Bifidobacterium strains
B. adolescentis ATCC 15703T ATCC 15705
B. angulatum DSM 20098T
B. animalis ATCC 25527T DSM 10140
B. bifidum DSM 20456T NCIMB 8810
B. boum ATCC 27917T
B. breve ATCC 15700T DSM 20091 LMG 11613
B. catenulatum ATCC 27539T ATCC 27675
B. dentium ATCC 27534T
B. gallicum DSM 20093T
B. gallinarum ATCC 33777T
B. infantis LMG 8811T
B. inopinatum DSM 10107T
B. longum ATCC 15707T
B. magnum ATCC 27540T
B. pseudocatenulatum DSM 20438T
B. pseudolongum ATCC 25526T
B. suis ATCC 27533T
Other Strains
Bacillus cereus ATCC 11778
Bacteroides fragilus LMG 10263T
Brevibacterium casei ATCC 35513T
Clostridium difficile ATCC 9689T
Enterococcus feacalis DSM 20478T
Escherichia coli ATCC 35218
Lactobacillus acidophilus ATCC 4356T
Lactobacillus brevis LMG 18022
Lactobacillus bulgaricus ATCC 11842T
Lactobacillus casei ATCC 393T DSM 20011T
Lactobacillus fermentum DSM 20052T
Lactobacillus plantarum DSM 20174T
Lactobacillus reuteri LMG 9213T
Lactobacillus rhamnosus ATCC 53103
Listeria monocytogenes ATCC 7644
Pediococcus acidilactici DSM 20284T
Propionibacterium avidum DSM 4901
Pseudomonas aeruginosa DSM 1117
Saccharomyces cerevisiae DSM 2548
Salmonella typhimurum ATCC 14028
Staphylococcus aureus ATCC 29213
ATCC: American Type Culture Collection; DSM: Deutsche Sammlung von Mikroorganismen und Zellkulturen, Germany; LMG: Laboratory for Microbiology, University of Gent, Belgium; NCIMB: National Collections of Industrial and Marine Bacteria, UK.

[0056]All bifidobacteria strains were cultured in Mann Rogosa Sharp (MRS) broth (Oxoid, Basingstoke, UK) media at 37 °C for 24 hours under anaerobic conditions. The overnight cultures were stored at -20 °C until further processing.

[0057]DNA was extracted from bacterial cultures by thawing 5 ml of frozen overnight cultures in ice water. Subsequently, the cultures were centrifuged for 20 minutes at 4000 rpm at 4 °C (Sorvall RT7, Du Pont, Stevenage, UK) to pellet the bacterial cells. The pellets were washed with 1 ml TES (50 mM Tris-HCl [pH 8.0], 5 mM EDTA, 50 mM NaCl), followed by a centrifugation step of 10 minutes at 4000 rpm at 4 °C. Supernatants were removed and the pellet were resuspended in 1 ml of THMS (30 mM Tris-HCl [pH 8.0], 3 mM MgCl2, 25% (w/v) sucrose). After transfer of the suspensions into a two ml eppendorf tube, 200 µl lysozyme (0.1 g/ml; Sigma Aldrich Chemie, Steinheim, DE) and 40 µl mutanolysine (1 mg/ml; Sigma Aldrich Chemie, DE) was added and incubated for 30 minutes at 37 °C. Subsequently, the solutions were centrifuged for 5 minutes at 10000 rpm at 4 °C (Sigma 1-15, Sigma Laborzentrifugen GmbH, Osterode am Harz, DE). Supernatants were removed and the pellets were resuspended in 100 µl THMS, whereto 400 µl TES (including 0.5% SDS) and 7.5 µl of Proteïnase K (20 mg/ml; Boehringer Mannheim GmbH, Mannheim, DE) were added. The mixture was vortexed and incubated for 30 minutes at 65 °C. Subsequently, a standard phenol/chloroform extraction was carried out, followed by a treatment with 2.5 µl RNase A (1 mg/ml; Roche Diagnostics, Mannheim, DE) for 30 minutes at 37 °C. Subsequently, the DNA was precipitated by storing at -20 °C for at least 30 minutes after addition of 2 volumes ice cold ethanol (96%) and 0.1 volume of 3 M sodium acetate (pH 5.2). Precipitated solutions were centrifuged for 20 minutes at 13000 rpm at 4 °C and the supernatants were washed with 500 µl 70% ethanol, followed by centrifugation at 13000rpm for 5 minutes at 4 °C. Supernatants were discarded and the pellets were air dried at room temperature. The DNA was resuspended in 100 µl sterile milli-Q and stored at -20 °C.

[0058]Firstly, the specificity of each duplex 5' nuclease assay was tested by performing a 25 µl amplification of the different strains (see table 2). These 25 µl PCR reactions were performed using 2.5 µl DNA template, 12.5 µl TaqMan Universal Master Mix (Applied Biosystems), 900 nM of each primer and 200 nM of each probe, followed by running the TaqMan Universal Temperature Profile, which consists of 2 minutes at 50 °C, 10 minutes at 95 °C, followed by 45 cycles of 15 seconds at 95 °C and 60 °C for 1 minute, on the ABI Prism 7700 (Applied Biosystems, Nieuwerkerk a/d IJssel, NL). All of the 5' nuclease assays were specific for the Bifidobacterium species for which they were developed and the 5'nuclease assay for determination of the total amount of Bifidobacterium detected all Bifidobacterium species tested, but no other strains like Propionibacterium or Lactobacillus. It should be noted that the 5'nuclease assay for B. catenulatum also detects B. pseudocatenulatum. Furthermore, DNAse and RNAse treated samples were tested to assure that no contaminated RNA was detected during the assay. Secondly, a mix of monocultures from B. adolescentis, B. angulatum, B. breve, B. bifidum, B. catenulatum, B. dentium, B. infantis and B. longum was prepared to verify that the total of this mix would sum up to approximately 100%. In that case, competition between the different Bifidobacterium species, which serve as template, can be excluded. This is indeed the case, as can be seen in figure 1, which shows the determined amounts of each Bifidobacterium species in the mix as well as the total amount of Bifidobacterium species in the mix.

[0059]The CV values for reproducibility and repeatability for the different kind of 5' nuclease assays were determined and can be found in table 3.

Table 3

Sensitivity of the 5' nuclease assays in comparison to "conventional" PCR and reproducibility and repeatability of the 5' nuclease assays
Target Sensitivitya (x) Reproducibilityb [CV (%)] Repeatabilityc [CV (%)]
B. adolescentis 10,000 5.11 5.68
B. angulatum 1000 19.48 20.92
B. bifidum 100 11.65 11.20
B. breve 100 2.06 4.08
B. catenulatum 1000 9.42 14.83
B. dentium 100 12.65 11.35
B. infantis 1000 2.34 2.31
B. longum 10,000 9.10 8.18
a number of times that the 5' nuclease assay is more sensitive then "conventional" PCR
b reproducibility is determined by testing monocultures (100%) in ten fold and calculation of the CV (%) based on the gained results
c repeatability is determined by testing monocultures (100%) three times in four fold and calculation of the CV (%) based on results gained

[0060]The developed 5' nuclease assays were compared to the conventional qualitative species-specific PCR (using the primers as described by Matsuki, T., K. Watanabe, R. Tanaka, M. f*ckuda, and H. Oyaizu. 1999. Distribution of bifidobacterial species in human intestinal microflora examined with 16S rRNA-gene-targeted species-specific primers. Appl. Environ. Microbiol. 65:4506-4512) to determine the sensitivity of the different assays as well as checking for false positive or negative results. Table 3 shows the different sensitivities of the 5' nuclease assays in relation to the conventional species specific PCR. Table 4 show the final optimal primer and probe concentrations used in the duplex 5' nuclease assays.

Table 4

Optimised final primer and probe concentrations used in the different duplex 5' nuclease assays
Target 5' nuclease assay Forward Primer (nM) Reverse Primer (nM) Probe (nM)
B. adolescentis B. adolescentis 300 150 100
All Bifidobacterium 300 600 100
B. angulatum B. angulatum 900 900 200
All Bifidobacterium 300 300 50
B. bifidum B. bifidum 600 600 200
All Bifidobacterium 300 300 100
B. breve B. breve 300 300 100
All Bifidobacterium 450 450 150
B. catenulatum B. catenulatum 300 300 100
All Bifidobacterium 600 600 100
B. dentium B. dentium 900 900 200
All Bifidobacterium 300 300 50
B. infantis B. infantis 300 300 100
All Bifidobacterium 900 900 100
B. longum B. longum 300 300 100
All Bifidobacterium 600 600 200
All All Bifidobacterium 450 450 100
Bifidobacterium All bacteria 900 900 200

Example 2: Clinical trial


[0061]The study was a double blind, placebo-controlled multi-center trial with two intervention groups. Fully formula fed infants, aged 28 to 90 days, were recruited from four hospitals in Germany. Infants were included in the study if they had a birth weight between 2600 and 4500 g, and were fully formula fed for at least four weeks before the start of the intervention period. Infants with congenital abnormalities, or with proven or suspected cow's milk allergy, infants derived from multiple births, infants that had received antibiotics less than two weeks before the start of the study, and infants that were fed any pro- or prebiotic formula less than a month before the start of the study, were excluded from the study. After enrolment, infants were randomly allocated to one of two treatment groups: a group receiving an infant formula supplemented with 0,8 g/100ml galacto-oligosaccharides and fructo-polysaccharides (GFSF-group) and a group receiving a standard infant formula (SF-group). The macronutrient composition of the formulas is shown in table 5.

Table 5:

Macronutrient composition of the study formulas (per 100 ml ready to use formula)
Carbohydrate mixture-supplemented formula (Aptamil 1 with GOS/FOS, Milupa) Standard formula (Aptamil 1, Milupa)
Energy (kcal) 72 72
Protein (g) 1.5 1.5
Carbohydrate (g) 8.5 8.5
-Lactose (g) 7.5 7.5
-Starch (g) 1 1
Non-digestible oligosaccharides (g) 0.8 0
-Galacto-oligosaccharides (g) 0.72 0
-Fructo-polysaccharides (g) 0.08 0
Fat (g) 3.6 3.6

[0062]A group of breast-fed infants was included as a reference group (BF group). Within three days after the start of the study period, after 4 weeks, and at the end of the study period (6 weeks), faecal samples were collected. The study was approved by the medical ethical committees of the four hospitals. Written informed consent was obtained from the parents before the start of the study.

[0063]Nucleic acids were isolated from faeces by thawing faecal samples in ice water, followed by a 10x (w/v) dilution in PBS (0.37 M NaCl, 2.7 mM KCl, 8.1 mM Na2HPO4 [pH 7.4]) and hom*ogenisation for 10 minutes using a stomacher (IUL Instruments, Barcelona, Spain). hom*ogenised faeces was stored at -20°C prior to the actual DNA isolation. The extractions were started by thawing 1 ml of a hom*ogenised faeces sample in ice water, followed by centrifugation for 1 minute at 1100 rpm to remove debris and large particles. Supernatants were transferred to a new tube and centrifuged for 5 minutes at 10000 rpm. Subsequently, the pellets were resuspended in 1 ml TN150 (10 mM Tris-HCl [pH 8.0], 10 mM EDTA) and transferred to sterile tubes containing 0.3 g zirconium beads (diameter 0.1 mm, BioSpec Products, Bartlesville, US). To these suspensions 150 µl of TE-buffered phenol (pH ± 7.5) was added and the samples were placed in a mini-bead beater (BioSpec Products, Bartlesville, US), for 3 minutes at 5000 rpm. After bead-beating the samples were immediately cooled on ice, before addition of 150 µl chloroform. Samples were vortexed shortly and centrifuged for 5 minutes at 10000 rpm, upper phases were transferred to clean 2 ml eppendorf tubes and the phenol/chloroform extraction was started. Phenol-chloroform extraction was followed by precipitation of DNA through placement of the samples at -20 °C for at least 30 minutes, after addition of 1 ml ice-cold ethanol (96%) and 50 µl 3 M sodium acetate (pH 5.2). Consecutively, the samples were centrifuged for 20 minutes at 13000 rpm and washed with 500 µl 70% ethanol. After centrifugation for 5 minutes at 13000 rpm, the supernatants were discarded and the pellets were air dried at room temperature. The DNA was resuspended in 100 µl sterile milli-Q and stored at -20 °C.

[0064]The duplex 5' nuclease assays are used for the relative quantification of the different Bifidobacterium species in faecal samples. The relative amount of each species is calculated according to Liu et. al. 2002. Briefly, efficiency of each amplification curve was calculated separately, by the formula E = (threshold A / threshold B)-(Ct,A - Ct,B) - 1. With help of the calculated efficiencies the initial amount of DNA (R0) is calculated by Ro = threshold / (1 + E)Ct. The initial amount of DNA of a Bifidobacterium species can then be divided with the initial amount of DNA of all Bifidobacterium species. Thereafter the obtained ratio's can be normalised with help of the ratio of a monoculture, which is set to 100%.

[0066]The percentage of the genus Bifidobacterium as a percentage of total bacteria was 75, 47, and 68% in the BF, SF, and GFSF group, respectively, which demonstrates that the GFSF group, fed a mixture of nondigestible carbohydrates, has a more bifidogenic flora, as in the BF group, than in the SF group.

[0067]In table 6 the prevalence of each species in the different groups at the beginning as well as at the end of the study is shown. In table 7 the percentage of Bifidobacteria species relative to the total amount of Bifidobacteria is shown.

Table 6:

Prevalence (in %) of Bifidobacteria species in the faeces of infants after 6 weeks of feeding with human milk (BF), an infant formula with a prebiotic mixture (GFSF) or with a standard formula (SF).
Species BF GFSF SF
B. catenulatum 80 67 75
B. adolescentis 20 11 50
B. breve 70 78 63
B. longum 50 56 63
B. bifidum 10 11 13
B. angulatum 30 11 13
B. infantis 100 100 100
B. dentium 20 11 13

Table 7:

Percentage of Bifidobacteria species with respect to the total number of Bifidobacteria in the faeces after a 6 week feeding period.
Species Breast-fed % (sd) GFSF-fed % (sd) SF-fed % (sd)
B. catenulatum 1.9 (1.0) 1.5 (3.0) 9.8 (12.6)
B. adolescentis 0.3 (0.9) 0.1 (0.2) 2.9 (6.0)
B. breve 11.7(9.6) 5.4 (10.8) 4.9 (10.7)
B. longum 7.3 (13.9) 5.4 (10.7) 6.2(9.4)
B. bifidum <0.1 (0.0) <0.1 (0.0) <0.1 (0.0)
B. angulatum <0.0 (0.0) <0.1 (0.2) <0.1 (0.0)
B. infantis 32.0 (18.9) 32.1 (20.0) 37.8(18.4)
B. dentium <0.1 (0.0) <0.1 (0.0) <0.1 (0.0)

[0068]A large variety of Bifidobacterium species is present in the three different groups. Furthermore, a significant decrease in prevalence and amount of B. adolescentis is visible in breast-fed infants and in infants receiving GFSF contrary to infants receiving a standard formula. After 6 weeks of feeding the prevalence and percentage of B. adolescentis is much higher in SF-fed babies than in babies which were GFSF or breast-fed. Analyses of the faecal samples of GFSF infants shows a large variety in the bifidobacterial flora similar to breast-fed infants and stimulation of only one or a few species is not observed. Besides the effect on B. adolescentis the profiles of breast-fed infants and infants receiving GFSF also showed less B. catenulatum (+ B. pseudocatenulatum) than the profile of infants receiving a standard formula. B. infantis, and B. longum seems to be predominant in breast-fed infants as well as in infants receiving a standard formula (SF) or a standard formula supplemented with prebiotics (GFSF). Also B. breve was dominant in all three groups, but in the group receiving breast milk B. breve as a % of total bifidobacteria was higher (11.7 %) as in the SF (4.9 %) and GFSF (5.4%) group.

Example 3: Animal experiments on allergy


[0069]Specific pathogen free male BALB/c mice were obtained from Charles River (Maastricht, the Netherlands). Food and water was provided ad libitum and the mice were used when 6-9 weeks of age. All experiments were approved by the animal ethics committee of the University of Utrecht, The Netherlands.

[0070]Ovalbumin (grade V) and acetyl-β-methylcholine chloride (methacholine) were purchased from Sigma Chemical Co. (St. Louis, MO, USA). Aluminium hydroxide (AlumImject) was purchased from Pierce (Rockford, IL, USA).

[0071]Mice were sensitised by two i.p. injections with 10 µg ovalbumin adsorbed onto 2.25 mg aluminium hydroxide in 100 µl saline or saline alone on days 0 and 7. Mice were challenged on days 35, 38, and 41 by inhalation of ovalbumin aerosols in a plexiglass exposure chamber for 20 minutes. The aerosols were generated by nebulising an ovalbumin solution (10 mg/ml) in saline using a Pari LC Star nebulizer (Pari respiratory Equipment, Richmond, VA, USA).

[0072]Mice were treated daily with 1x10e9 (CFU) Bifidobacterium breve and 25 mg of a mixture of galactooligosaccharides and fructopolysaccharides (9:1) orally via gavage (0.2 ml, physiological salt solution) starting at day 28 upto the end of the experiment (i.e. day 42). As a control 0.2 ml physiological salt solution was administered via gavage.

[0073]Airway responsiveness to inhaled nebulised methacholine was determined 24 hours after the final aerosol challenge, in conscious, unrestrained mice using whole body plethysmo-graphy (BUXCO, EMKA, Paris, France). The airway response was expressed as enhanced pause (PenH).

[0074]Statistical Analysis: The airway response curves to methacholine were statistically analysed by a general linear model or repeated measurements followed by post-hoc comparison between groups. Cell counts were statistically analysed using the Mann-Whitney U test (Siegel, S., Castellan Jr. N J, 1988, "Nonparametric statistics for the behavioural sciences" 2nd ed. McGraw Hill Book Company, New York, USA). All other analyses were performed using Student's t-test (Abramowitz, M., Stegun, I.A., 1972, "Handbook of mathematical functions" Dover publications, Inc. New York, USA). A probability value of p<0.05 was considered as statistically significant.

[0075]Results on airway hyperresponsiveness: Measurements on airway hyperresponsiveness show that compared to control the mice receiving the B. breve + a mixture of galactooligosaccharides and fructopolysaccharides show a statistically reduced airway hyperresponsiveness, indicative of a lowered asthmatic reaction.

[0076]In figure 2 the airway hyperresponsiveness is plotted as relative PenH (enhanced pause) versus the metacholine concentration for mice receiving a combination of B. Breve + a mixture of GOS/FOS and a control group of mice receiving saline instead. The plotted values of relative PenH are obtained after subtraction of the blank values obtained for mice not ovalbumin-sensitised and normalisation to the value obtained for the control group at the highest concentration of metacholine.

[0077]The compositions of all following examples may additionally contain minerals, trace elements and vitamins, choline, taurine, carnitine, and/or myo-inositol or mixtures thereof, as known in the art and in accordance with international guidelines. Furthermore, organic acids, flavours and or colorants may or may not be present.

Example 4


[0078]An infant milk formula containing per 100 ml final product (and per 13.1 g powder):

8 energy % protein 1.4 g (casein whey mixture)
45 energy % digestible carbohydrates 7.5 g
47 energy % fat 3.5 g
GOS (90% galacto-oligosaccharides, Borculo Domo NL) / polyfructose, (10% inulin, Raftilin HP, Orafti BE) 0.4 g
B. breve: 1.3x108 cfu

Example 5


[0079]An infant milk formula containing per 100 ml final product (and per 14 g powder):

10 energy % protein 1.8 g (casein whey mixture)
46 energy % digestible carbohydrates 8.0 g
44 energy % fat 3.4 g
GOS/polyfructose (see ex. 4) 0.4 g
B. breve 1.4x108 cfu

Example 6


[0080]An infant milk formula containing per 100 ml final product (and per 15 g powder):

10 energy % protein 1.7 g (casein whey mixture)
48 energy % digestible carbohydrates 8.1 g
42 energy % fat 3.1 g
GOS/polyfructose 9/1 0.8 g
Galactomannan 0.42
B. breve 1.5x108 cfu

Example 7


[0081]An infant milk formula containing per 100 ml final product (and per 15.9 g powder):

13 energy % protein 2.2 g (casein whey mixture)
49 energy % digestible carbohydrates 8.6 g
37 energy % fat 3.0 g
GOS/polyfructose 9/1 0.8 g
Galactomannan 0.4 g
B. breve 1.6x108 cfu

Example 8


[0082]An infant milk formula containing per 100 ml final product (and per 13.5 g powder):

9 energy % protein equivalent 1.5 g (hydrolysed whey protein)
42 energy % digestible carbohydrates 6.9 g
49 energy % fat 3.6 g
GOS/polyfructose/sialyllactose 7/2/1 0.8 g
B. breve 1.4x108 cfu

Example 9


[0083]An infant formula containing per 100 ml final product (and per 13.5 g powder):

11 energy % protein 1.8 g (soy protein)
40 energy % digestible carbohydrates 6.7 g
49 energy % fat 3.6 g
GOS/galacto-ogosaccharides/polyfructose 8/1/1 0.8 g
B. breve 1.4x108 cfu

Example 10


[0084]A supplement containing: 0.4-0.8 g to be added to 100 ml milk: per g:

0.26 g galactomannan,
0.44 g digestible carbohydrates
0.3 g GOS/polyfructose 85/15
1.0x109 cfu B. breve

Example 11


[0085]An infant nutrition containing per 100 g (85 g to be added to 240 ml milk)

4 energy % protein 4.7 g (cow's milk protein)
53 energy % digestible carbohydrates 68 g
43 energy % fat 24.6 g
GOS/polyfructose 9/1 0.8 g
B. breve 1.2x109 cfu

Example 12


[0086]An infant nutrition containing per 100 ml product

11 energy % protein 2.8 g (casein)
49 energy % carbohydrates 12.3 g
40 energy % fat 4.4 g
GOS/polyfructose 85/15 0.8 g
B. breve 5x108 cfu

Example 13


[0087]An infant nutrition composed of rice flour containing per 100 g dry product: (4-7 spoons to be added to 200 ml warm infant formula, follow-on formula, toddler's milk or cow's milk)

7.4 g protein (vegetable)
83 g carbohydrates
0.5 g fat
3 g dietary fibre including 1.5 g GOS/polyfructose 9/1
1x1010 cfu B. breve

Example 14


[0088]An infant nutrition composed of precooked flakes (wheat, rye, rice, barley, maize, oat, buckwheat) containing per 100 g dry product. (5-7 spoons to be added to 250 ml warm infant formula, follow-on formula, toddler's milk or cow's milk)

9.5 g protein (vegetable)
74 g carbohydrates
2.0 g fat
3 g dietary fibre including 1.5 g GOS/polyfructose 8/2
2x1010 cfu B. breve

SEQUENCE LISTING


[0089]

<110> N.V. Nutricia

<120> Synbiotic composition for infants

<130> P208356EP1

<140> EP08167964.9
<141> 2004-10-25

<160> 27

<170> PatentIn version 3.1

<210> 1
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 1
atagtggacg cgagcaag   18

<210> 2
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 2
agattgaaga gt   12

<210> 3
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 3
ttggcgaaat cgctgaaaga acgtttcttt tt   32

<210> 4
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 4
tggtggtttg agaactgg   18

<210> 5
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 5
atagtgtcga cgaac   15

<210> 6
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 6
aacaataaac aaaacaaagg ccaaagcctc   30

<210> 7
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 7
gttgatttcg ccggactc   18

<210> 8
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 8
ttcgcaagcc ta   12

<210> 9
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 9
tcgcgcaaaa actccgctgg caaca   25

<210> 10
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 10
gtggtggctt gagaactg   18

<210> 11
<211> 14
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 11
gatagcaaaa cgat   14

<210> 12
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 12
cgaaacaaac actaaatgat tcctcgttct tgctct   36

<210> 13
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 13
gtggacgcga gcaatgc   17

<210> 14
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 14
aatagagcct ggcgaaat   18

<210> 15
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 15
cgaagcaaac gatgacatca   20

<210> 16
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 16
ccgccaccca cagtct   16

<210> 17
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 17
agcaaaggga aacaccat   18

<210> 18
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 18
gtttacgcgt ccaacgga   18

<210> 19
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 19
cgcgagcaaa acaatggt   18

<210> 20
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 20
taacgatcga   10

<210> 21
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 21
aacgaacaat agagttttcg aaatcaacag caaaa   35

<210> 22
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 22
tggaagacgt cgttggct   18

<210> 23
<211> 11
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 23
ttatcgcgcc a   11

<210> 24
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 24
ggcaaaacgc acccaccgca   20

<210> 25
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 25
gggatgctgg tgtggaag   18

<210> 26
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 26
agatgctcgc gt   12

<210> 27
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 27
ccactatcca gttcaaacca ccacgcgcca   30


Synbiotic composition for infants - Patent 2033529 (2024)

FAQs

Do formula-fed babies need probiotics? ›

Good bacteria from probiotics can be naturally found in breast milk and baby formula. It is preferred to hold off on probiotic supplements until your baby is older than six months old. Pediatric gastroenterologist and division chief at K. Hovnanian Children's Hospital, Beth Loveridge-Lenza, D.O.

Do babies need prebiotics? ›

A young infant's immune system is more vulnerable because their gut is less diverse than a fully formed adult's, while normally your little one cannot get their essential prebiotics from solid foods until they start weaning. It's therefore important to build up your little one's gut flora to kickstart their immunity.

Do babies need probiotics yes or no? ›

Research indicates that probiotics are safe and well- tolerated in normal, healthy infants and children. Good tolerance has also been observed in premature infants, very low birth weight babies and in HIV-infected children and adults. Probiotics are also safe to use in late pregnancy.

How do I know if my baby needs a probiotic? ›

There are some cases where a probiotic supplement may be beneficial, though, including:
  1. If Your Baby Has Colic. ...
  2. If You Want To Prevent Antibiotic-Associated Diarrhea. ...
  3. Your Baby Has Acute Gastroenteritis. ...
  4. Your Baby Is in Daycare and You Want To Decrease Their Chance of Getting Sick.
Nov 2, 2023

Do pediatricians recommend probiotics for babies? ›

In general, pediatricians recommend that children get probiotics from foods instead of through over-the-counter supplements. Foods that have probiotics include: Kefir, a fermented milk drink. Yogurt, which is thicker than kefir.

How to use Optibac probiotics for babies? ›

You can drop the liquid onto on a nipple, clean finger, or spoon; add to cool, non-acidic drinks, or directly into baby's mouth. Is there a best time of day to give friendly bacteria to babies? We recommend giving friendly bacteria with their first feed or meal of the day.

Should baby formula have prebiotics? ›

Since most studies suggest a trend for beneficial clinical effects, and since these ingredients are very safe, prebiotics bring infant formula one step closer to breastmilk, the golden standard.

Do babies get probiotics through breast milk? ›

As Dr. Weiner explains, "Probiotics do not directly transfer into breast milk but they work by improving the mother's health, which in turn changes the composition of the breast milk to make it healthier for baby."

Do probiotics help babies with gas? ›

Certain strains of probiotics have been shown to support digestive health, relieve colic symptoms, improve lactose metabolism in babies with lactose intolerance, and to help to manage diarrhea, which may also reduce negative side effects like gas and bloating, when taken in adequate amounts.

Do formula-fed babies need supplements? ›

Babies who are having more than 500ml (about a pint) of infant formula a day should not be given vitamin supplements. This is because formula is fortified with vitamins A, C and D and other nutrients.

Top Articles
Latest Posts
Article information

Author: Golda Nolan II

Last Updated:

Views: 5900

Rating: 4.8 / 5 (58 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Golda Nolan II

Birthday: 1998-05-14

Address: Suite 369 9754 Roberts Pines, West Benitaburgh, NM 69180-7958

Phone: +522993866487

Job: Sales Executive

Hobby: Worldbuilding, Shopping, Quilting, Cooking, Homebrewing, Leather crafting, Pet

Introduction: My name is Golda Nolan II, I am a thoughtful, clever, cute, jolly, brave, powerful, splendid person who loves writing and wants to share my knowledge and understanding with you.